
DELPHI SOCKETS COMPONENT V2.0
Written by: Gary T. Desrosiers

desrosi@pcnet.com
71062,2754

SOCKETS component provides Delphi with a component capable of
performing TCP/IP Socket's functions by interfacing with WINSOCK.DLL.

To use this component you must have a WinSock 1.1 compatable TCP/IP
stack. The control has been tested with Trumpet 2.1C, Chameleon 4.03,
PC/TCP, and the native stacks in Windows NT and Windows 95.

This is Version 2.0 of the component. Most improvements and modifications
have been made from suggestions that I received. One of the biggest
compliaints has been the lack of good examples. To correct this, I have
written an FTP client that uses many of the new features of this component
and also a very general program that shows how to handle both client and
server requests as well as multiple concurrent clients going to a single server.
The other most requested feature was the ability to send and receive data that
is greater that the length of a Pascal string. This was implemented using the
custom methods; SSend and SReceive that accept PChar instead of Pascal
style strings.

The following is a summary of the Version 2.0 improvements;

 - Added properties;
 - MasterSocket, Gets the listener's socket
 - Peek, Preview data in the input buffer.
 - NonBlocking, Blocking vs Non-Blocking sockets
 - Timeout, For blocking mode timeouts
 - OOB, Sends and receives data out of band (urgent data)

 - Modified properties;
 - SocketNumber to read/write
 - Text (no longer published)

 - Added Methods;
 - SCancelListen, new method cancels the listener socket
 - GetPeerIPAddr, returns partners IP address
 - GetPeerPort, returns partners port

 - Modified Methods;
 - GetIPAddr, Documented and bug fix
 - GetPort, Documented
 - SClose, Added shutdown, etc.
 - SReceive, Modified to use PChar instead of Pascal strings
 - SSend, Modified to use PChar instead of Pascal strings
 - SetText, Now loops until entire buffer sent

 - Added Events
 - OnErrorOccurred, Called on WinSock errors.

 - Example programs
 - cltsvr.zip contains a very basic client/server program

 that shows how to use this component.

 - ftp.zip contains an FTP client
 - rexec.zip implements a basic rexec client

Files contained in SOCKV2.ZIP

SOCKETS.PAS - The SOCKETS component
SOCKETS.DCR - Component resource file
SOCKETS.WRI - What you're reading now.
REXEC.ZIP - REXEC client sample application
FTP.ZIP - FTP client sample application
CLTSVR.ZIP - Simple client/server example application

Installation

First, make sure that you have WinSock.DLL and that it's avaialble and functional.
Then...
In Delphi, drop down the Options + Install Components... menu.
Click on Add...
Enter the path and file name of where the SOCKETS.PAS module is located.
Click on OK
The SOCKETS component should now appear in the Samples folder within Delphi.
Test it out using one of the supplied applications.

Summary of the implemented properties

Property Name Writable Readable Design time Run time
IPAddr yes yes yes yes
Port yes yes yes yes
SocketNumber yes yes no yes
MasterSocket yes yes no yes
Text yes yes no yes
Peek no yes no yes
OOB yes yes no yes
NonBlocking yes yes yes yes
Timeout yes yes yes yes

Summary of the implemented Methods

SConnect Connect to listening server
SListen Listen on Port
SCancelListen Cancel listen request
SAccept Accept client connection
SClose Close sockets
SReceive Receive PChar data
SSend Send PChar data
GetPort Get local port of SocketNumber
GetIPAddr Get local IP Address
GetPeerPort Get partner's port assignment
GetPeerIPAddr Get partner's IP Address

Summary of the implemented Events

OnDataAvailable Called when data is available to be received on the socket
OnSessionAvailable Called when a session is available to be accepted
OnSessionClosed Called when a connection is lost
OnSessionConnected Called when an SConnect completes
OnErrorOccurred Called on error conditions

Implemented Properties

IPAddr
Sets the IP Address of the partner that you will

 eventually SConnect to. You may specify this as
 dotted decimal or a literal name to be converted
 via DNS.
 examples;
 Sockets1.IPAddr := 'desrosi';
 Sockets1.IPAddr := '127.0.0.1';
 addr := Sockets1.IPAddr;

Port
 Sets the Port number of the remote port to connect
 to or the local port to listen on depending on
 whether you subsequently issue a SConnect or SListen.
 This can be specified as a number or a literal name
 to be converted via DNS.
 examples;
 Sockets1.Port := 'echo';
 Sockets1.Port := '7';
 port := Sockets1.Port;

SocketNumber
 Returns (or sets) the socket number of the currently
 allocated connection.
 example;
 sock := Sockets1.SocketNumber;

MasterSocket
 Returns (or sets) the master socket number (listener)
 example;
 msock := Sockets1.MasterSocket;

Text
 if set, sends the text to the partner.
 if read, receives some text from the partner.
 examples;
 buffer := Sockets1.Text; (* Receive data *)
 Sockets1.Text := 'This is a test'; (* Send Data *)

Peek
 Returns up to 255 characters of data waiting to
 be received but does not actually receive the
 data.

example;
buffer := Sockets1.Peek; (* Look at arriving data *)

OOB
 if set, sends the text to the partner as urgent (out of
 band) data.
 if read, receives urgent (out of band) data.
 examples;
 buffer := Sockets1.OOB;
 Sockets1.OOB := 'ABOR'; (* Send abort urgently *)

NonBlocking
 Set to False for blocking mode and True for non-blocking
 mode (the default). When the socket is in blocking
 mode, none of the event callback functions (with the
 exception of OnErrorOccurred) will function.

Timeout
 When NonBlocking = 0 (blocking mode) this value
 specifies the maximum amount of time that
 a socket operation can take. After this time
 limit expires, the operation is canceled and
 an error occurs. The default is 30 (seconds).
 The Valid range is 0-60 seconds. Setting Timeout
 to zero causes the operation to wait indefinitely.

Implemented Methods

SConnect
Connects to the remote (or local) system

 specified in the IPAddr and Port properties.
 example;
 Sockets1.SConnect; (* Connect to partner *)

SListen
Listens on the port specified in the Port property.

 example;
 Sockets1.SListen; (* Establish server environment *)

SCancelListen
Cancels listens on the socket.

 example;
 Sockets1.SCancelListen; (* Dont accept further clients *)

SAccept
Accepts a client request. Usually issued in

 OnSessionAvailable event.
 example;
 Sock := Sockets1.SAccept; (* Get client connection *)

SClose
Closes the socket.

 example;
 Sockets1.SClose; (* Close connection *)

SReceive
Receives data from partner, similar to

 reading the property Text although this function
 uses PChar instead of Pascal strings.
 example;
 len := Sockets1.SReceive(Sockets1.SocketNumber,szBuffer,4096);

SSend
Sends data to the partner, similar to

 setting the property Text although this function
 uses PChar instead of Pascal strings.
 example;
 len := Sockets1.SSend(Sockets1.SocketNumber,szBuff,32000);

GetPort
Returns the actual port number of the socket

 specified as the argument. Generally used when you've
 specified a port of zero and need to retrieve the
 assigned port number.

GetIPAddr
Returns the IP Address of the socket specified

 as the argument.

GetPeerPort
Returns the partners port number of the socket

 specified as the argument.

GetPeerIPAddr
Returns partners IP Address of the socket

 specified as the argument.

Implemented Events

OnDataAvailable
Called when data is available to

 be received from the partner. You should issue;
 buffer := Sockets1.Text;

 or a SReceive method to receive the data from the partner.

OnSessionAvailable
Called when a client has requested

 to connect to a 'listening' server. You can call
 the method SAccept here.

OnSessionClosed
Called when the partner has closed

 a socket on you. Normally, you would close your side
 of the socket when this event happens.

OnSessionConnected
Called when the SConnect has

 completed and the session is connected. This is a
 good place to send the initial data of a conversation.
 Also, you may want to enable certain controls that

 allow the user to send data on the conversation here.

OnErrorOccurred
Called when an error occurs on the socket.

 If defined, the OnErrorOccurred procedure is called when
 the error occurs. If the procedure isn't defined then
 a dialog box is displayed with the error text and the
 program is halted.

I respond to all e-mail sent to me concerning this component and will (to the
best of my ability) try and solve any problems and answer any question as long
as you are not using this code for commercial purposes. All code including the
example programs are released to the public domain and as such can be used
in any mannor you see fit.

Gary T. Desrosiers
desrosi@pcnet.com
compuserve: 71062,2754

